Incremental Learning of Fuzzy Basis Function Networks with a Modified Version of Vector Quantization

نویسندگان

  • Edwin Lughofer
  • Ulrich Bodenhofer
چکیده

In this paper, an algorithm for datadriven incremental learning of fuzzy basis function networks is presented. A modified version of vector quantization is exploited for rule evolution and incremental learning of the rules’ antecedent parts. Antecedent learning is connected in a stable manner with a recursive learning of rule consequent functions with linear parameters. The paper is concluded with an evaluation of the proposed algorithm on highdimensional measurement data for engine test benches.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

INTEGRATED ADAPTIVE FUZZY CLUSTERING (IAFC) NEURAL NETWORKS USING FUZZY LEARNING RULES

The proposed IAFC neural networks have both stability and plasticity because theyuse a control structure similar to that of the ART-1(Adaptive Resonance Theory) neural network.The unsupervised IAFC neural network is the unsupervised neural network which uses the fuzzyleaky learning rule. This fuzzy leaky learning rule controls the updating amounts by fuzzymembership values. The supervised IAFC ...

متن کامل

Self-evolving neural networks for rule-based data processing

Two training algorithms for self-evolving neural networks are discussed for rule-based data analysis. Efficient classification is achieved with a fewer number of automatically added clusters, and application data is analyzed by interpreting the trained neural network as a fuzzy rule-based system. The learning vector quantization algorithm has been modifified, acquiring the self-evolvement chara...

متن کامل

An axiomatic approach to soft learning vector quantization and clustering

This paper presents an axiomatic approach to soft learning vector quantization (LVQ) and clustering based on reformulation. The reformulation of the fuzzy c-means (FCM) algorithm provides the basis for reformulating entropy-constrained fuzzy clustering (ECFC) algorithms. This analysis indicates that minimization of admissible reformulation functions using gradient descent leads to a broad varie...

متن کامل

Fast Learning Algorithm for Fuzzy Inference Systems using Vector Quantization

It is known that learning methods of fuzzy inference systems using vector quantization (VQ) and steepest descend method (SDM) are superior in terms of the number of rules. However, they need a great deal of learning time. The cause could be that both of VQ and SDM perform only local searches. On the other hand, it has been shown that a learning method of radial basis function (RBF) networks usi...

متن کامل

Ieee Transactions on Signal Processing

|Two training algorithms for self evolving neural networks are discussed for rule based data analysis. E cient classi cation is achieved with less number of automatically added clusters and application data is analysed by interpreting the trained neural network as a fuzzy rule based system. Learning Vector Quantisation algorithm has been modied acquiring the self evolvement character in the pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006